Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 13(1): 379, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727610

RESUMO

BACKGROUND: Understanding local Anopheles species compositions and bionomic traits are vital for an effective malaria vector intervention strategy. Though eight malaria vectors, including species complexes, have been documented across the island of Sulawesi, Indonesia, a comprehensive survey linking morphological and molecular species identification has not been conducted in this global hotspot of biodiversity. RESULTS: Eighteen distinct species of Anopheles were molecularly identified in a 1 km2 area in Karama village, West Mamuju Province, Sulawesi. Known species included An. aconitus, An. karwari, An. peditaeniatus, An. vagus, An. barbirostris, An. tessellatus, An. nigerrimus, An. crawfordi, An. maculatus, An. flavirostris and An. kochi. Of the 18 distinct sequence groups identified through both ribosomal DNA internal transcribed spacer region 2, and mitochondrial DNA cytochrome c oxidase subunit 1 loci, 8 could not be identified to species through comparison to published sequences. The comparison of morphological and molecular identities determined that interpretations of local species compositions for primary and expected species in Karama (An. barbirostris and An. vagus) had the highest rate of accuracy (92.1% and 87.6%, respectively) when compared to molecular analysis. However, the remaining distinct sequences molecularly identified to species were identified correctly by morphological methods less frequently, from 0 to 83%. CONCLUSIONS: Karama, Indonesia has a high diversity of Anopheles spp. The unexpected high number of Anopheles species in a small area points to possible complex transmission dynamics and limitations with vector control based on possible varying behaviors and interactions with both humans and interventions. Morphological identification of Anopheles spp. in this study was more accurate for primary and expected species than secondary or unexpected species. Finally, the inability to identify seven sequence groups to species with consensus sequences implies that future studies employing sequencing are required to clarify species compositions in the Nigerrimus Subgroup, among others, as well as their distribution and vector status. Use of molecular methods in conjunction with morphological investigations for analysis of species composition, population dynamics and bionomic characteristics is directly implicated in understanding drivers of malaria transmission, intervention effectiveness, and the pursuit of malaria elimination.


Assuntos
Anopheles , Biodiversidade , Animais , Anopheles/anatomia & histologia , Anopheles/classificação , Anopheles/genética , Classificação , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Genes de Insetos , Humanos , Indonésia , Malária/transmissão , Mosquitos Vetores/anatomia & histologia , Mosquitos Vetores/classificação , Mosquitos Vetores/genética
2.
Aging (Albany NY) ; 12(11): 10099-10116, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427127

RESUMO

The aging of brain cells and synaptic loss are the major underlying pathophysiological processes contributing to the progressive decline in cognitive functions and Alzheimer's disease. The difference in cognitive performances observed between adult and aged subjects across species highlights the decline of brain systems with age. The inflection point in age-related cognitive decline is important for our understanding of the pathophysiology of neurodegenerative diseases and for timing therapeutic interventions. Humans and nonhuman primates share many similarities including age-dependent changes in gene expression and decline in neural and immune functions. Given these evolutionary conserved organ systems, complex human-like behavioral and age-dependent changes may be modeled and monitored longitudinally in nonhuman primates. We integrated three clinically relevant outcome measures to investigate the effect of age on cognition, motor function and diurnal activity in aged baboons. We provide evidence of a naturally-occurring age-dependent precipitous decline in movement planning, in learning novel tasks, in simple discrimination and in motivation. These results suggest that baboons aged ~20 years (equivalent to ~60 year old humans) may offer a relevant model for the prodromal phase of Alzheimer's disease and related dementias to investigate mechanisms involved in the precipitous decline in cognitive functions and to develop early therapeutic interventions.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Actigrafia , Adulto , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico , Animais , Técnicas de Observação do Comportamento , Comportamento Animal/fisiologia , Encéfalo , Ritmo Circadiano/fisiologia , Cognição/fisiologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Feminino , Humanos , Aprendizagem/fisiologia , Masculino , Pessoa de Meia-Idade , Motivação/fisiologia , Movimento/fisiologia , Testes Neuropsicológicos , Papio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...